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2507
The problem of guiding a winged spacecraft from a circular
orbit to a ground landing strip through a 'corridor" in
the H, V coordinates is discussed, and nonlinear laws of
center-of-mass control are given to solve the problem.
Equations are derived for control of lateral and longi-
tudinal motion. Optimum curves are plotted for descent
along the corridor, and an automatic control system for
withdrawal of the craft to a landing site is given, with
a block diagram. The derived control law, with continu-

ous correction of the reversal point, ensures an exact

trajectory of motion and gliding at maximum banking angle.

INTRODUCT ION ﬁW\

The principal difficulties involved in guiding a winged spacecraft to a
landing strip following its descent from a circular orbit consist in the follow-
ing:

1. The velocity of the vehicle must be reduced, by means of energy dissi-
pation, from escape velocity to a speed close to landing speed.

2. The initial scatter of parameters (distance, altitude) which, on reentry

into the denser layers of the atmosphere (70 - 80 km), may reach several hundred

# Numbers in the margin indicate pagination in the original foreign text.
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kilometers must be reduced to extremely small errors of the order of several
hundred meters.

3. The maneuvering possibilities of the vehicle are extremely restricted:
in the upper layers of the atmosphere, by the insufficiency of aerodynamic
forces and in the lower layers, by problems of strength of material and heating;
The “corridorm in the coordinates (H,V) along which the vehicle must be guided
is very narrow.

The present study is concerned with certain nonlinear laws of center-of-
mass control which make it possible to overcome these difficulties. The prob-
lems of obtaining the necessary information are not considered here. The
availability of on-board or ground-based equipment acquiring and processing the
corresponding information and producing control signals transmitted to the
autopilot, is assumed a priori.

Part I of this report is concerned with longitudinal motion and Part 1II,

with the control of lateral motion.
I. CONTROL OF LONGITUDINAL MOTION /3

Section 1. Control of longitudinal Motion and General Considerations
Concerning the Trajectory of Descent

Flight distance is examined here as a function of the initial conditions
and the regime of descent. The equations of motion of a winged spacecraft in

the longitudinal plane are (neglecting the Earth's rotation):

dv _ C )
mer = - xSq - © sin ©

de '
mV —5— = CySq - (1 - V) cos ©



dH

5t = Vsin?®
(1)
-%%— =V cos 8
where |
2 "
V- ;r ;r =R+ H g=—

Ro = 6371.2 km; » = 3.986 x 10° kii® /sec®
From the system of equations (1) the following relation may be derived:

<
v

KdE + (1 - V®) 4L + a8 = 0 (2)

where
K = Cy/Cx = aerodynamic quality, (Cy = Cp; Cx = Cp)
E=H+ Vz/rg = gpecific mechanical energy of the spacecraft (total
energy with respect to unit weight).
Whence
9 z i
L=IE' L oraE s [, — g
E 1-V° 8. p(1 - T7)
(3)
where Ey and 65 are the unit mechanical energy of the vehicle and the tra- yin

Jectory angle respectively, at the start of descent,
E. and 9 are the values of these parameters at the end of descent.
The first term in expression (3) determines the flight distance due to the
expenditure of mechanical energy and the second term, the distance due to the
ballistic effect.

The flight distance, with K = const due to the decrease in kinetic energy,



may be calculated from the formula (r = Ro):

Ro 1 -V,
Lv = —5— K in T

To evaluate the ballistic distance, we compare it with the distance due

to the decrease in mechanical energy. As a result, we have

A v
AT L RN
Iy v 8, -8 r(8, ~6,)

av

Calculations according to this formula for a vehicle with a high quality
factor of the order of 2 - 3 show that the ballistic distance accounts for a
small portion of the total distance.

When analyzing I; it is convenient to utilize a plane on which we can plot:
the line grids of constant energy, the constant value of the velocity head q -
= pv?/r = const, the constant temperature or pressure at the critical point,
etc. The descent of the spacecraft my also be represented by a specific curve
in the coordinates H,V. To accomplish withdrawal of the spacecraft to the
landing site, the spacecraft must be made to move along a preset curve in the
coordinates H,V. This problem can be solved for a broad class of curves H(V).
The permissible curves H(V) of descent should not twice intersect the same /5
curve E = const. The descent curve H(V) must have no sharp inflections, since
in practice this would require impermissibly high overloads. lLastly, certain
regions on the H,V-plane may be forbidden for a specific spacecraft, either
owing to extremely high overloads or owing to excessively high temperatures or

owing to smallness of the velocity head. In other words, the curves H(V) should

lie within a definite permissible descent corridor.



Assume that the descent curve H(V) has been chosen so as to meet the above
requirements. At each point on this curve q, E, the Mach number, and all the
aerodynamic characteristics of the vehicle are known. Therefore, Cy, o, Cx
and K = Cy/Cx can be determined at each point. As a result, it is possible to
construct the function K/(1 - 62) with respect to E and, accordingly, then cal-;
culate the approximate flight distance corresponding to the descent along the |
selected curve H(V). Of special interest is the curve Hm(V); flight along this
curve occurs with maximum aerodynamic quality. If the initial and final points
of the descent lie on the curve Hm(V), the first term of the integral (3),
i.e., the energy distance I; will reach its maximum on integration along the
curve Hm(V), since we have K < K,, . on any other curve. In other words,
achieving the maximum Ly requires flying with maximum aerodynamic quality.

If the spacecraft has an inertial navigation system or some other facili- ?
ties for measuring flight altitude and flight speed, it is possible to perform
the descent along any permissible curve H(V). In particular, the curves H, (V) Zé
and H, (V), corresponding to descent along the upper and lower boundaries of theé
descent corridor, respectively, are of special interest. If the curve Hm(V) %
lies within the descent corridor and nowhere intersects the curves H, (V) and ‘
H, (V), then a flight along the curves H, (V) and H, (V) involves a shorter dis-
tance than the regime of descent along the curve ...*.

In view of the above, a series of simple but highly effective schemes for
automatic withdrawal of spacecraft to a landing site may be proposed.

Section 2. Automatic Control System for Withdrawal of a
Spacecraft to the Landing Site

This system may be separated into two circuits (Fig.l): the inner or auto-

* Notation missing from original.



nomous circuit and the outer or withdrawal circuit. The autonomous circuit is
designed to stabilize the rapid angular motion of the vehicle about its center
of mass and to stabilize the variation in flight altitude in accordance with
variation in speed, i.e., to stabilize a given descent curve H(V). The homing
circuit should generate the required curve H(V) with the object of withdrawing
the spacecraft onto the landing site. Consider first the autonomous circuit.
Let us assume that, on board the spacecraft, the flight altitude and speed are
known and, in addition, a device is carried which makes it possible to generate.

a function of the form

o =a(H, V)

For example, at low flight speeds a parameter of this kind, continually [z
measured during the flight, may be the dynamic pressure, equal to the differencé
between the presgsure at the critical point and the static pressure. As is ‘
known, dynamic pressure chiefly depends on H and M, i.e., on H and V.

The function of the autonomous circuit is to stabilize the principal pa-
rameters that determine the state of the craft, in accordance with the signals
o(H, V) arriving from the outer circuit. The law of this stabilization is not
considered here. Note that in a number of cases it is possible to employ linear
stabilization; in general, however, it is desirable to have nonlinear laws of
stabilization and, in particular, a self-adjusting autopilot in view of the
marked variations in the efficiency of the controls and aerodynamic character-
istics owing to the extensive variation in the M number and velocity head. Let
us now consider the outer circuit.

Assume that we can select a curve H, (V) located between the curve Hm(V)

and H, (V) or Hm(V) and H, (V). It is desirable for this curve to satisfy the



condition ¢ = 0p = const, since in this case programming of ¢ with respect to V
is not required. The selection of the curve H, or H, is dictated by specific
considerations which are not directly related to the problems considered, for
example, the problems of heating or material strength. Below, we will assume
that the reference curve H, (V) is taken between Hm(V) and H, (V). We use the
curve K (V) and the corresponding program o, (V) as the theoretical curve and

the program of descent. When flying in accordance with this program, the de-
scent follows a known trajectory and, therefore, the flight distance is known.
Assume further that, during the flight, on the basis of known H and V, a value Z§
of E=H + V2rg is computed on board the vehicle. Since, for a rated trajectory,
it is possible to construct the function L with respect to E, which will be

denoted by I;, (specified), the control signal o, , may be shaped according to

P
the deviation of the true distance from the distance specified for the existing.

margin E according to the formula : i

6. = £(8L) = £[L - L, (E)]

sp

for which the function f(AL) may have the form shown in Fig.2. A block dia-
gram of the homing system is shown in Fig.l. If, on reentry into the atmos-
phere, the distance of the vehicle from the landing strip is longer than was
calculated, the flight may follow the program om(V).

The energy in this regime will be dissipated more economically than in
flight following the rated program 0o (V). Ultimately, at some instant of time,
the true distance to the airport will equal the value specified for the existing
energy margin of the spacecraft, whereupon the flight will follow the reference
program 0o (V) until an altitude is reached at which the process of leveling

with respect to the ground and landing is commenced. The speed at that altitude



will be close to the rated speed, no matter what the initial deviations of the
distance and velocity vector from their calculated values might be and regard-
less of the effect of external disturbances. In the event of overflight, a
similar picture will be observed. At first the flight will follow the program
0, (V) and then the program oo (V).

Calculations on a digital computer for investigating such an automatic [2
homing system show that the precision of homing of a vehicle with K,,, = 2 - 3
reaches several kilometers.

It is readily seen that this automatic homing system is fundamentally
close to optimal from the viewpoint of accomplishing withdrawal and landing of
the vehicle in the presence of a maximally broad range of initial pre-withdrawal
conditions, since it allows utilizing, to a marked degree of completeness, the .
maximally possible maneuvering qualities of the spacecraft in the presence of

restrictions.

Section 3. Withdrawal of Vehicle to Reference Trajectories

Generally the initial altitude differs markedly from that required for
gliding along a specified curve o(H,V). Therefore, at the beginning of descent,
the process of transfer to the specified curve must be organized.

The elimination of large initial deviations may be accomplished by stabi-
lizing the specified constants of the controlling parameter. The moments of
transfer from one value of the parameter to another depend on the combination
of the initial conditions (b, V%, %, and Ip), i.e., on the initial-state
vector, and they may be calculated on a digital computer with the aid of a
special control algorithm.

Clearly, achieving the optimally rapid transition process is particularly



important when a minimum gliding distance is required, i.e., in flight along
o, (Hy¥). The following may be chosen as the control parameter: the angle of [ig
attack, the overload n,, the angle of deviation of the control surface §,, etc.f
Let us consider an elementary case where the overload ny, is taken as the
control parameter.
The switching instants of the control parameter may be determined on the
basis of the maximum principle.
Calculations of the transition processes indicate that it is possible to

simplify the system of equations describing a process of this kind:

V=% = const

Sin®8 =0

Cos 8 1

g =g, = const

These simplifications reduce this system of equations to a second-order
system.

The maximum principle states that, in this case, the optimal trajectory is
obtained when the maximum value of the control parameter of one sign is first
specified and then, at Aa certain time instant %;, that sign is reversed.

Since the overload n, possible at extremely high altitudes is low, we
assume that n, = O along the first segment, while no= L. along the second
segment.

Upon integration of the simplified system of equations, for the time in-
terval over which n, = const, we have

e-_-._g.?L._(n’ + W - 1Dt + 6

V
° (conttd)



2 |
* Bt + T | (L)

H=g, (n + V2 - 1)
After elimination of t: /i1

2 |
V o} 2 H

— 9% + 5 |
26, (ny + Vo= 1)

where
VS o%

2g,, (n, + V5 - 1)

Sl.—.:}-b_

Figure 3 shows certain phase trajectories corresponding to the process of
transition to the curve o(V,H) in the case where n, = O and ny, = L.

It should be borne in mind that, beginning with a certain altitude, the
overload ny, = L, may be achieved only when @ > «,, . In Fig.3 curve 1, obtained
for the maximum permissible entry angle /65 /..., corresponds to this case. |

Curve 2 determines the minimum entry angle /6o /,

vin (in this case the dura-.

tion of the effect of the overload n, is zero) .
Solving system (4), we obtain the required duration of effect of the over-

load ny and the total time of the process:

1 — - -
. Vo 05 (ny + U5 - 1)-85(n,, + V5 - 1)
= - O + -
" By (ny, + Vo - 1) ° Ny, = Ny,

Vo 9, - 60 nyl - nya




In addition to calculating tlx and tzl, it is necessary to select the
curve of o(V,H) the flight along which will assure the specified gliding dis-
tance (see Section 2).

The exact values of t; and ty will differ from those calculated from
eqs.(5) derived from the simplified equations. The principal error will be
due to the inconstancy of speed, which is particularly marked in the presence
of considerable velocity heads, i.e., along the second segment.

All the indicated variables [ti1, ty and o(V,H)] should be calculated by /12
the method of successive approximations. Calculations show that the curve of
o(V,H) was found with sufficient accuracy beginning with the second approxima- .
tion, and the values of t; and ty, beginning with the fourth.

Figure 3 shows the trajectory obtained by this computational method
(curve 3).

Figure L gives one of the trajectories obtained by using this maneuvering i
method. As can be seen, the process occurs without overshooting.

As is known, in linear control systems it is impossible to obtain processeé
of this kind. In this case, the process is either extremely extended or in- |
volves overshooting.

Using an optimal system makes it possible to greatly expand the permissiblé

range of initial conditions (6 and l,) compared with linear control systems.
II. OPTIMAL 1AW OF CONTROL FOR LATERAL MOTION /13

Section 1. Synthesis of the Principle of Optimality

The synthesis of optimal lateral control while guiding a gliding object
to a landing strip reduces to finding a maneuver for transferring the object

from an initial point with the phase coordinates Sp, Lo, ¥ (Fig.5) to a final
11



position with the coordinates S = 0, ¥ = O in minimum time. The principle of
optimality, as construed in this sense, makes it possible to withdraw the ob-
ject from a maximum range of initial conditions determined by the maneuverabil-
ity of the object. In accordance with the theorem of existence and uniqueness
(Bibl.1) for optimal control there exists a functiony = F(L, S, ¥) (v is the
banking angle), which depends only on the current phase coordinates, such that
it determines all the optimal trajectories. The reason why optimal control
must be found in this form is that, in the course of its travel, the object
will experience the effect of various unknown disturbances. The law of control
in the proposed form serves for a continual calculation of the new optimal tra-.
jectory on taking into account the new initial conditions, thereby offsetting '
the effect of the disturbances.

The system of differential equations describing the lateral motion of a

flying craft will be

ds

ry = -V 3in ¥
dL
< = -V cos ¥ cos Y
(6)
de - v
dat
ay g .
T=—TSIHY

The system (1) was derived on assuming a small inclination angle of the /14

trajectory 6 and a small derivative , 80 that sin 8 = 6, cos 6 = 1, and

4o . 0; we neglect the effect of the Earth's rotation.

dt
In our further discussion, we assume that the banking angle y which de-

termines the existing lateral overload is restricted to a degree at which the

12



influence of lateral on longitudinal motion is negligibly small. Without pre-
senting calculations, we will point out that this may be achieved if —yp <
€Y <Y (Yo = 0.3); here it may be assumed that siny = y, cos vy = 1.

In addition, to linearize the system (1), we assume sin § = ¥, cos ¥ = 1.
Note that the system may be completely integrated even without this last assump%
tion but the obtained results, as calculations show, differ little from those |
obtained with this assumption.

After all simplifications, we have

ds
— = W
dL
dy g
dL v

For the system of equations (2) we shall seek the optimal control y =
= y(L) and such an optimal trajectory with initial conditions S(Ips) = S,
¥(Io) = ¥ as would, at some distance (the coordinate Io is not fixed), satisfy
the ultimate conditions S(Ic) = 0; ¥(Ie) = O. On the basis of L.S.Pontryagin's
maximum principle (Bibl.l), it may be found that the function ensuring opti-
mality of control with respect to rapidity of maneuver, is defined by the /15

equation
L) = ign(ly - L ‘
Y(L) = Yo sign(Ly ) : @)
In this equation, 1 is the distance corresponding to the instant of re-
versal of the banking angle. Here, optimal control is detenninéd by a piece-~

wise-constant function which assumes the values ¥ = + Yo and has two constancy

intervals (if extraneous disturbances are absent).

13



The right-hand part of the second equation of the system (2) includes the
square of velocity, which is essentially a variable. Numerous calculations
show that it is possible to find a comparatively simple analytic expression for
velocity as a function of distance; most functions of this kind are contained

within the limits of the expressions defined:

2

Vi =K (L +a) | (9")

V=K(L+a) (9"

where k' , ki, a, a1 are parameters serving as functions of the initial gliding
distance.

We then find the solution of the system (2), determining the trajectory of -
motion of the gliding object from initial to final state for a parabolic de-
pendence of the velocity on distance, i.e., we solve jointly egs.(2), (3), and

(L) for the following final conditions:

L=L -¥=%; S

&

(10}

[

I
O

L=1 -v =03 S

Since the banking angle has two fixed constancy intervals y = yo and /16
Y = =Yo, the trajectory will consist of two segments. Considering the condi-
tions for the joining of solutions at the boundary between these two segments

and integrating the system, we obtain

v , |
L = 0¥ (1o+a)-a Ve (Lowa)- — et [(o+a) (o) (o)) (1)

The coordinates So, Lo, ¥o may at each time instant be taken as the cur-
rent coordinates. Therefore, the reversal should be performed at the instant

1,



when the computed value of the coordinate 1, is compared with the current value:
of the coordinate L.
Thus, the control signal arriving at the input of the autopilot is deter-

mined by the formula:

Y.p = Yo sign @(So, s, '*0) ; (111)

where the control function ¢ is

9(S0 10 5% ) = Lo-Ly = Io+a-ef (10+a)+‘/e3:-" (Lo +a)"-% ek [(lo +a)? (o +k)-so(L+a)j
o (12)

The instant of reversal corresponds to the equality:

@(SO’ I-O, WO) =0

The realization of the control law, solving the problem of optimal landing.
as formulated above may be performed with a circuit including the following
links:

a ground-based or on-board device providing the required primary in-
formation (L ... » S,ea,)}
a computer which, along with generating the control signal, should
process the primary information (perform smoothing, differentiation, /17
noise filtration, etc.);
an autopilot stabilizing the vehicle with respect to its center of
mass and maneuvering it in accordance with instruction signals.

Section 2. Analysis of Maneuverability in the Presence of
Perturbations

When shaping the control signal it is necessary to ensure satisfactory
accuracy of maneuvering during the action of various disturbances on the system.

15



The most likely perturbations during lateral maneuvers of the vehicle are:
sidewinds, errors in maintaining the specified banking angle, and deviations
of the actual pattern of speed variation from that assumed in determining the
control function.

The system of equations describing the motion of the vehicle in the field:

of a constant sidewind directed along the axis may be presented as:

ds#

"

dyx g (Y +_W__§_‘_’__>

dt v g dL (13)

where
W is the wind speed;

S¥, y¥* are the parameters of motion in the wind field.
Equation (13) implies that the wind effect is equivalent to the following

change in the originally specified banking angle of the vehicle:

Ay = W dv
A ) A
The trajectories of motion in the coordinates S, L and on the phase /18

plane, that make it possible to determine the maneuverability of the vehicle in
the field of a constant sidewind, are shown in Fig.6. It follows from these
data that the obtained control law, thanks to the continuous correction of the
reversal point, ensures an exact trajectory. The same results are also obtained
in the presence of errors in determining the speed and maintaining the banking-
angle control specified by this law. Here, in all cases, in the process of
control, movement with a maximum banking angle is ensured and, hence, the

16



maneuvering possibilities of the vehicle are completely exploited.
The other coordinates of the reversal point S5; = S;1(Io, So, Vo), V1 =

=¥1(lo, So, ¥o) may be found in the same way as Iy = Li(lo, So, ¥o)-

choice of one parameter or another as the determining parameter should be based

on the nature of the initial information and the simplicity of the computer

algorithm. Of major interest is the analytic expression establishing the rela-.

tionship between phase coordinates at points of banking-angle reversal.

case of a linear dependence of speed on distance V = k’i (L + a) the relationship

between S; and ¥; is defined by the following expression

V1 ~¥o
. G (Io+a; )+l 1 (Io+ay)
S = Kin 2¥, =¥o ¥ - ¥
” (Io+ay )+1 —k—-(lo +ay)+1
1 1

On the basis of eq.(1l4) the control function will be

Q(L, ¥, S) = 5-51(lo, Yo, V1)

In certain practical cases, the effect of the initial angle ¥ may be

(14)

a9

(15)

ignored and the exact relations S; (¥, Io) may be approximated by direct ones:

¢(S) L’ *) =S5 - C(I-O)*O

Calculations showed that in this case a high accuracy of maneuver is en-

sured both under normal conditions and in the presence of various perturbations.

In the control function S~C(Io)¥ the variable ¥ may be replaced by the

derivative é, since 5 = V).

17
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